Constructive description of analytic Besov spaces in strictly pseudoconvex domains

نویسندگان

چکیده

We use the method of pseudoanalytic continuation to obtain a characterization spaces holomorphic functions with boundary values in Besov terms polynomial approximations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev Space Projections in Strictly Pseudoconvex Domains

The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...

متن کامل

Scattering Theory for Strictly Pseudoconvex Domains

The spectral theory of a metric of Bergman type on a strictly pseudoconvex manifold is described and the scattering matrix is shown to be a pseudodifferential operator of Heisenberg type.

متن کامل

Strictly Pseudoconvex Spin Manifolds, Feeerman Spaces and Lorentzian Twistor Spinors

We prove that there exist global solutions of the twistor equation on the Fef-ferman spaces of strictly pseudoconvex spin manifolds of arbitrary dimension and we study their properties.

متن کامل

Hankel Operators and the Dixmier Trace on Strictly Pseudoconvex Domains

Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of strictly pseudoconvex domains in C. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin. 2000...

متن کامل

BESOV SPACES ON DOMAINS IN Rd

We study Besov spaces 5°(LP(Í2)), 0<p,q,a<oo,on domains Í2 in Rd . We show that there is an extension operator W which is a bounded mapping from B°(LP(Ü.)) onto B%(Lp(Rd)). This is then used to derive various properties of the Besov spaces such as interpolation theorems for a pair of B%(Lp(il)), atomic decompositions for the elements of 5°(Lp(f2)), and a description of the Besov spaces by means...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2021

ISSN: ['1664-2368', '1664-235X']

DOI: https://doi.org/10.1007/s13324-020-00466-0